info:eu-repo/semantics/article
Quantum function algebras from finite-dimensional Nichols algebras
Fecha
2020-10Registro en:
García, Gastón Andrés; Farinati, Marco Andrés; Quantum function algebras from finite-dimensional Nichols algebras; European Mathematical Society; Journal of Noncommutative Geometry; 14; 3; 10-2020; 879-911
1661-6952
CONICET Digital
CONICET
Autor
García, Gastón Andrés
Farinati, Marco Andrés
Resumen
We describe how to find quantum determinants and antipode formulas from braidedvector spaces using the FRT-construction and finite-dimensional Nichols algebras. It improvesthe construction of quantum function algebras using quantum grassmanian algebras.Given a finite-dimensional Nichols algebra B, our method provides a Hopf algebraH such that B is a braided Hopf algebra in the category of H-comodules. It also serves assource to produce Hopf algebras generated by cosemisimple subcoalgebras, which are ofinterest for the generalized lifting method. We give several examples, among them quantumfunction algebras from Fomin-Kirillov algebras associated with the symmetric groupon three letters.