info:eu-repo/semantics/article
On the Lie algebra structure of the first Hochschild cohomology of gentle algebras and Brauer graph algebras
Fecha
2020-09Registro en:
Chaparro Acosta, Cristian Arturo; Schroll, Sibylle; Solotar, Andrea Leonor; On the Lie algebra structure of the first Hochschild cohomology of gentle algebras and Brauer graph algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 558; 9-2020; 293-326
0021-8693
CONICET Digital
CONICET
Autor
Chaparro Acosta, Cristian Arturo
Schroll, Sibylle
Solotar, Andrea Leonor
Resumen
In this paper we determine the first Hochschild homology and cohomology with different coefficients for gentle algebras and we give a geometrical interpretation of these (co)homologies using the ribbon graph of a gentle algebra as defined in [32]. We give an explicit description of the Lie algebra structure of the first Hochschild cohomology of gentle and Brauer graph algebras (with multiplicity one) based on trivial extensions of gentle algebras and we show how the Hochschild cohomology is encoded in the Brauer graph. In particular, we show that except in one low-dimensional case, the resulting Lie algebras are all solvable.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Identidades graduadas em álgebras não-associativas
Silva, Diogo Diniz Pereira da Silva e -
Estructura de álgebra de Poisson de la cohomología de ciertas álgebras de Lie nilpotentes
Gutierrez, Gonzalo Emanuel Matías (2022-07-29)Si g es un álgebra de Lie, la cohomología H**(g) tiene una estructura de súper-álgebra de Poisson con producto asociativo súper-conmutativo V y un súper-corchete de Lie {-,-} que se compatibiliza con el producto \vee en ... -
Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'
Resende, Adriana Souza