info:eu-repo/semantics/article
Quartz chemistry of granitic pegmatites: Implications for classification, genesis and exploration
Fecha
2021-12Registro en:
Müller, Axel; Keyser, William; Simmons, William B.; Webber, Karen; Wise, Michael; et al.; Quartz chemistry of granitic pegmatites: Implications for classification, genesis and exploration; Elsevier Science; Chemical Geology; 584; 12-2021; 1-17
0009-2541
CONICET Digital
CONICET
Autor
Müller, Axel
Keyser, William
Simmons, William B.
Webber, Karen
Wise, Michael
Beurlen, Hartmut
Garate Olave, Idoia
Roda Robles, Encarnación
Galliski, Miguel Angel
Resumen
Quartz from 254 pegmatites representing eight pegmatite fields and provinces worldwide was investigated by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) to determine concentrations of trace elements Al, Ti, Li, Ge, B, Be, Rb, Na, K, Ca, P, Ga, Sb, Zn and U. A total of 271 new analyses combined with 535 published LA-ICP-MS quartz chemistry data were evaluated with binary and ternary trace element discrimination plots and principal component analysis (PCA). The classifications applied for discrimination of pegmatite types include the widely applied NYF(Nb-Y-F) - LCT(Li-Cs-Ta) classification and the new RMG (pegmatites derived from residual melts of granite magmatism) - DPA (pegmatites as direct products of anatexis) grouping. Pegmatites of both classifications can be well distinguished via Al-Ti, Al-Li and Al/Ti-Ge/Ti binary trace element plots and the Ti - Al/10 - 10*Ge ternary diagram. PCA applied to Al, Li, Ti, Be, B, Ge and Rb contents in quartz allowed to further distinguish between anatectic DPA-1 (Li-enriched DPA) and granite-pluton-derived RMG-1 (Li-enriched RMG) pegmatites. Some pegmatite fields and provinces (Hagendorf-Pleystein, Oxford County) are distinguishable by region-specific Li, Ge and Al contents. The results imply that the chemistry of pegmatite quartz is mainly controlled by the origin (source rock chemistry) of pegmatite melts and, to a much lesser extent, by the geodynamic setting of the pegmatite fields and provinces. Chemically primitive NYF and DPA-2 type pegmatites contain quartz with the lowest total trace-element contents and lowest internal-pegmatite trace-element variation, making it potentially suitable for high-tech application. Pegmatite quartz containing >30 μgg-1 Li and >100 μgg-1 Al is strongly indicative of economic spodumene/montebrasite mineralization and, thus, serves as a strong Li-mineralization pathfinder mineral. Quartz with >5 μgg-1 B may be a potential indicator for gem-quality tourmaline mineralization.