dc.creatorBrude, Javier Eugenio
dc.creatorSasyk, Roman
dc.date.accessioned2022-01-12T19:16:22Z
dc.date.accessioned2022-10-15T08:45:31Z
dc.date.available2022-01-12T19:16:22Z
dc.date.available2022-10-15T08:45:31Z
dc.date.created2022-01-12T19:16:22Z
dc.date.issued2021-09
dc.identifierBrude, Javier Eugenio; Sasyk, Roman; Metric approximations of unrestricted wreath products when the acting group is amenable; Taylor & Francis; Communications In Algebra; 2021; 9-2021; 1-13
dc.identifier0092-7872
dc.identifierhttp://hdl.handle.net/11336/149999
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4366594
dc.description.abstractWe give a simple and unified proof showing that the unrestricted wreath product of a weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear sofic, or hyperlinear, respectively. By means of the Kaloujnine-Krasner theorem, this implies that group extensions with amenable quotients preserve the four aforementioned metric approximation properties. We also discuss the case of co-amenable groups.
dc.languageeng
dc.publisherTaylor & Francis
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2021.1976790
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00927872.2021.1976790
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2004.05735
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAMENABLE GROUPS
dc.subjectHYPERLINEAR GROUPS
dc.subjectLINEAR SOFIC GROUPS
dc.subjectSOFIC GROUPS
dc.subjectUNRESTRICTED WREATH PRODUCTS
dc.subjectWEAKLY SOFIC GROUPS
dc.titleMetric approximations of unrestricted wreath products when the acting group is amenable
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución