info:eu-repo/semantics/article
SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot
Fecha
2021-05Registro en:
Rapp, Markus; Kaifler, Bernd; Dörnbrack, Andreas; Gisinger, Sonja; Mixa, Tyler; et al.; SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot; American Meteorological Society; Bulletin of The American Meteorological Society; 102; 4; 5-2021; 871-893
0003-0007
CONICET Digital
CONICET
Autor
Rapp, Markus
Kaifler, Bernd
Dörnbrack, Andreas
Gisinger, Sonja
Mixa, Tyler
Reichert, Robert
Kaifler, Natalie
Knobloch, Stefanie
Eckert, Ramona
Wildmann, Norman
Giez, Andreas
Krasauskas, Lukas
Preusse, Peter
Geldenhuys, Markus
Riese, Martin
Woiwode, Wolfgang
Friedl Vallon, Felix
Sinnhuber, Björn Martin
de la Torre, Alejandro
Alexander, Peter
Hormaechea, José Luis
Janches, Diego
Garhammer, Markus
Chau, Jorge L.
Conte, J. Federico
Hoor, Peter
Engel, Andreas
Resumen
The southern part of South America and the Antarctic peninsula are known as the world's strongest hotspot region of stratospheric gravity wave (GW) activity. Large tropospheric winds are deflected by the Andes and the Antarctic Peninsula and excite GWs that might propagate into the upper mesosphere. Satellite observations show large stratospheric GW activity above the mountains, the Drake Passage, and in a belt centered along 60°S. This scientifically highly interesting region for studying GW dynamics was the focus of the Southern Hemisphere Transport, Dynamics, and Chemistry-Gravity Waves (SOUTHTRAC-GW) mission. The German High Altitude and Long Range Research Aircraft (HALO) was deployed to Rio Grande at the southern tip of Argentina in September 2019. Seven dedicated research flights with a typical length of 7,000 km were conducted to collect GW observations with the novel Airborne Lidar for Middle Atmosphere research (ALIMA) instrument and the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb sounder. While ALIMA measures temperatures in the altitude range from 20 to 90 km, GLORIA observations allow characterization of temperatures and trace gas mixing ratios from 5 to 15 km. Wave perturbations are derived by subtracting suitable mean profiles. This paper summarizes the motivations and objectives of the SOUTHTRAC-GW mission. The evolution of the atmospheric conditions is documented including the effect of the extraordinary Southern Hemisphere sudden stratospheric warming (SSW) that occurred in early September 2019. Moreover, outstanding initial results of the GW observation and plans for future work are presented.