info:eu-repo/semantics/article
Approximation and symbolic calculus for Toeplitz algebras on the Bergman space
Date
2004-12Registration in:
Suarez, Fernando Daniel; Approximation and symbolic calculus for Toeplitz algebras on the Bergman space; Universidad Autónoma de Madrid; Revista Matematica Iberoamericana; 20; 2; 12-2004; 563-610
0213-2230
CONICET Digital
CONICET
Author
Suarez, Fernando Daniel
Abstract
If f ∈ L∞(D) let T_f be the Toeplitz operator on the Bergman space L^2_a of the unit disk D. For a C∗-algebra A ⊂ L∞(D) let T(A) denote the closed operator algebra generated by {Tf : f ∈ A}. We characterize its commutator ideal C(A) and the quotient T(A)/C(A) for a wide class of algebras A. Also, for n ≥ 0 integer, we define the n-Berezin transform B_nS of a bounded operator S, and prove that if f ∈ L∞(D) and f_n = B_nT_f then T_f_n→T_f .