info:eu-repo/semantics/article
Nitrate reduction by electrochemical processes using copper electrode: Evaluating operational parameters aiming low nitrite formation
Fecha
2021-07Registro en:
Beltrame, Thiago Favarini; Miranda Zoppas, Fernanda; Ferreira, J. Z.; Marchesini, Fernanda Albana; Bernardes, Andrea Moura; Nitrate reduction by electrochemical processes using copper electrode: Evaluating operational parameters aiming low nitrite formation; IWA Publishing; Water Science And Technology; 84; 1; 7-2021; 200-215
0273-1223
CONICET Digital
CONICET
Autor
Beltrame, Thiago Favarini
Miranda Zoppas, Fernanda
Ferreira, J. Z.
Marchesini, Fernanda Albana
Bernardes, Andrea Moura
Resumen
This work aims to present different electroreduction and electrocatalytic processes configurations to treat nitrate contaminated water. The parameters tested were: current density, cell potential, electrode potential, pH values, cell type and catalyst use. It was found that the nitrite ion is present in all process variations used, being the resulting nitrite concentration higher in an alkaline pH. The increase in current density on galvanostatic operation mode provides a greater reduction of nitrate (64%, 1.4 mA cm-2) if compared to the potentiostatic (20%) and constant cell potential (37%) configurations. In a dual-chamber cell the nitrate reduction with current density of 1.4 mA cm-2 was tested and obtained as a NO3- reduction of 85%. The use of single chamber cell presented 32 + 3% of nitrate reduction, indicating that in this cell type the nitrate reduction is smaller than in dual-chamber cell (64%). The presence of a Pd catalyst with 3.1% wt. decreased the nitrite (1.0 N-mg L-1) and increased the gaseous compounds (9.4 N-mg L-1) formation. The best configuration showed that, by fixing the current density, the highest nitrate reduction is obtained and the pH presents a significant influence during the tests. The use of the catalyst decreased the nitrite and enhanced the gaseous compounds formation.