info:eu-repo/semantics/article
Engineering protein nanoparticles out from components of the human microbiome
Fecha
2020-07-28Registro en:
López Laguna, Hèctor; Sánchez García, Laura; Serna, Naroa; Voltà Durán, Eric; Sanchez, Julieta Maria; et al.; Engineering protein nanoparticles out from components of the human microbiome; Wiley VCH Verlag; Small; 16; 30; 28-7-2020; 1-8; 2001885
1613-6810
1613-6829
CONICET Digital
CONICET
Autor
López Laguna, Hèctor
Sánchez García, Laura
Serna, Naroa
Voltà Durán, Eric
Sanchez, Julieta Maria
Sánchez Chardi, Alejandro
Unzueta, Ugutz
Łoś, Marcin
Villaverde Corrales, Antonio
Vázquez, Esther
Resumen
Nanoscale protein materials are highly convenient as vehicles for targeted drug delivery because of their structural and functional versatility. Selective binding to specific cell surface receptors and penetration into target cells require the use of targeting peptides. Such homing stretches should be incorporated to larger proteins that do not interact with body components, to prevent undesired drug release into nontarget organs. Because of their low interactivity with human body components and their tolerated immunogenicity, proteins derived from the human microbiome are appealing and fully biocompatible building blocks for the biofabrication of nonreactive, inert protein materials within the nanoscale. Several phage and phage-like bacterial proteins with natural structural roles are produced in Escherichia coli as polyhistidine-tagged recombinant proteins, looking for their organization as discrete, nanoscale particulate materials. While all of them self-assemble in a variety of sizes, the stability of the resulting constructs at 37 °C is found to be severely compromised. However, the fine adjustment of temperature and Zn2+ concentration allows the formation of robust nanomaterials, fully stable in complex media and under physiological conditions. Then, microbiome-derived proteins show promise for the regulatable construction of scaffold protein nanomaterials, which can be tailored and strengthened by simple physicochemical approaches.