info:eu-repo/semantics/article
Fractal dimension of diffusion-limited aggregation clusters grown on spherical surfaces
Fecha
2021-01Registro en:
Tenti, Juan Martín; Hernández Guiance, Sabrina Noemí; Irurzun, Isabel Maria; Fractal dimension of diffusion-limited aggregation clusters grown on spherical surfaces; American Physical Society; Physical Review E; 103; 1; 1-2021; 1-6
2470-0053
CONICET Digital
CONICET
Autor
Tenti, Juan Martín
Hernández Guiance, Sabrina Noemí
Irurzun, Isabel Maria
Resumen
In this work we study the fractal properties of diffusion-limited aggregation (DLA) clusters grown on spherical surfaces. Diffusion-limited aggregation clusters, or DLA trees, are highly branched fractal clusters formed by the adhesion of particles. In two-dimensional media, DLA clusters have a fractal dimension Df=1.70 in the continuous limit. In some physical systems, the existence of characteristic lengths leads us to model them as discrete systems. Such characteristic lengths may result also from limitations in measuring instruments, for example, the resolution of biomedical imaging systems. We simulate clusters for different particle sizes and examine the influence of discretization by exploring the systems in terms of the relationship between the particle size r and the radius of the sphere R. We also study the effect of stereographic projection on the fractal properties of DLA clusters. Both discretization and projection alter the fractal dimension of DLA clusters grown on curved surfaces and must be considered in the interpretation of photographic biomedical images.