info:eu-repo/semantics/article
The Structure of the Cobalt Oxide/Au Catalyst Interface in Electrochemical Water Splitting
Fecha
2018-09Registro en:
Fester, Jakob; Makoveev, Anton; Grumelli, Doris Elda; Gutzler, Rico; Sun, Zhaozong; et al.; The Structure of the Cobalt Oxide/Au Catalyst Interface in Electrochemical Water Splitting; Wiley VCH Verlag; Angewandte Chemie; 57; 37; 9-2018; 11893-11897
1433-7851
CONICET Digital
CONICET
Autor
Fester, Jakob
Makoveev, Anton
Grumelli, Doris Elda
Gutzler, Rico
Sun, Zhaozong
Rodríguez Fernández, Jonathan
Kern, Klaus
Lauritsen, Jeppe V.
Resumen
The catalytic synergy between cobalt oxide and gold leads to strong promotion of the oxygen evolution reaction (OER)—one half-reaction of electrochemical water splitting. However, the mechanism behind the enhancement effect is still not understood, in part due to a missing structural model of the active interface. Using a novel interplay of cyclic voltammetry (CV) for electrochemistry integrated with scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) on an atomically defined cobalt oxide/Au(111) system, we reveal here that the supporting gold substrate uniquely favors a flexible cobalt-oxyhydroxide/Au interface in the electrochemically active potential window and thus suppresses the formation of less active bulk cobalt oxide morphologies. The findings substantiate why optimum catalytic synergy is obtained for oxide coverages on gold close to or below one monolayer, and provide the first morphological description of the active phase during electrocatalysis.