info:eu-repo/semantics/article
H2S sensing characteristics of Ni-doped CaCu3Ti4O12 films synthesized by a sol-gel method
Fecha
2018-05Registro en:
Boontum, Arisara; Phokharatkul, Ditsayut; Hodak, Jose Hector; Wisitsoraat, Anurat; Hodak, Satreerat K.; H2S sensing characteristics of Ni-doped CaCu3Ti4O12 films synthesized by a sol-gel method; Elsevier Science Sa; Sensors and Actuators B: Chemical; 260; 5-2018; 877-887
0925-4005
CONICET Digital
CONICET
Autor
Boontum, Arisara
Phokharatkul, Ditsayut
Hodak, Jose Hector
Wisitsoraat, Anurat
Hodak, Satreerat K.
Resumen
The problem of detecting the toxic hydrogen sulfide (H2S) gas at part per million levels in air by means of simple solid state gas sensors is relevant to environmental and gas processing industries. In this work, high-performance H2S gas sensors are developed based on nickel-doped calcium copper titanate (Ni-doped CCTO) thin films synthesized by a sol-gel method. From gas-sensing measurements, the response of Ni-doped CCTO sensing films increased substantially with increasing Ni doping level from 1.5 to 7.3 wt%, revealing a catalytic effect of Ni on the surface reactions with adsorbed H2S molecules. In particular, 7.3 wt% Ni-doped CCTO sensors offered a high response of 120 for 10 ppm of H2S at the optimal operating temperature of 250 °C, an order of magnitude higher than that of undoped one. In addition, the response time dropped significantly from ∼80 s to ∼4 s while the recovery time slightly improved as the Ni doping content increased from 0 to 7.3 wt%. Moreover, the Ni-doped CCTO sensors exhibited good reproducibility and high H2S selectivity against ethanol, H2, NO2 and NH3. Therefore, the Ni-doped CCTO sensors are highly promising for sensitive and selective detections of H2S.