info:eu-repo/semantics/article
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
Fecha
2020-03Registro en:
Lauret, Emilio Agustin; On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 3-2020; 1-5
0002-9939
1088-6826
CONICET Digital
CONICET
Autor
Lauret, Emilio Agustin
Resumen
Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group.