info:eu-repo/semantics/article
Evolution of the upper crustal deformation in subduction zones
Fecha
2006-11Registro en:
Quinteros, Javier; Jacovkis, Pablo Miguel; Ramos, Victor Alberto; Evolution of the upper crustal deformation in subduction zones; American Society of Mechanical Engineers; Journal Of Applied Mechanics-transactions Of The Asme; 73; 6; 11-2006; 984-994
0021-8936
CONICET Digital
CONICET
Autor
Quinteros, Javier
Jacovkis, Pablo Miguel
Ramos, Victor Alberto
Resumen
The uplift and evolution of a noncollisional orogen developed along a subduction zone, such as the Andean system, is a direct consequence of the interrelation between plate tectonic stresses and erosion. Tectonic stresses are related to the convergence velocity and thermal state, among other causes. In this paper, a new model designed to investigate the evolution of the topography and the upper crustal deformation of noncollisional orogens in a subduction zone produced by the oceanic crust being subducted is presented. The mechanical behavior of the crust was modeled by means of finite elements methods to solve Stokes equations for a strain-rate-dependent viscoplastic rheology. The model takes into account erosion effects using interface-tracking methods to assisn fictitious properties to nonmaterial elements.