info:eu-repo/semantics/article
Reversing place transition nets
Fecha
2020-10Registro en:
Melgratti, Hernan Claudio; Mezzina, Claudio Antares; Ulidowski, And Irek; Reversing place transition nets; Tech Univ Braunschweig; Logical Methods in Computer Science; 16; 4; 10-2020; 1-28
1860-5974
CONICET Digital
CONICET
Autor
Melgratti, Hernan Claudio
Mezzina, Claudio Antares
Ulidowski, And Irek
Resumen
Petri nets are a well-known model of concurrency and provide an ideal setting for the study of fundamental aspects in concurrent systems. Despite their simplicity, they still lack a satisfactory causally reversible semantics. We develop such semantics for Place/Transitions Petri nets (P/T nets) based on two observations. Firstly, a net that explicitly expresses causality and conflict among events, for example an occurrence net, can be straightforwardly reversed by adding a reverse transition for each of its forward transitions. Secondly, given a P/T net the standard unfolding construction associates with it an occurrence net that preserves all of its computation. Consequently, the reversible semantics of a P/T net can be obtained as the reversible semantics of its unfolding. We show that such reversible behaviour can be expressed as a finite net whose tokens are coloured by causal histories. Colours in our encoding resemble the causal memories that are typical in reversible process calculi.