info:eu-repo/semantics/article
Completeness for monadic fuzzy logics via functional algebras
Fecha
2021-03-01Registro en:
Castaño, Diego Nicolás; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Rueda, Laura Alicia; Completeness for monadic fuzzy logics via functional algebras; Elsevier Science; Fuzzy Sets and Systems; 407; 1-3-2021; 161-174
0165-0114
CONICET Digital
CONICET
Autor
Castaño, Diego Nicolás
Cimadamore, Cecilia Rossana
Díaz Varela, José Patricio
Rueda, Laura Alicia
Resumen
We study S5-modal (monadic) expansions of extensions of Hájek's basic logic . Hájek proposed Hilbert-style systems axiomatizing these logics and we prove that completeness theorems for these logics follow from algebraic representation results, namely, functional representations of finitely subdirectly irreducible algebras. We prove a general theorem linking these concepts and give two major applications, namely, for the S5-modal expansions of Łukasiewicz and Gödel logics.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Hardware implementation of type-2 programmable fuzzifier
Rocha Rizol, Paloma M. S.; Mesquita, Leonardo; Saotome, Osamu; Botura Jr., Galdenoro -
On The Set Of Intermediate Logics Between The Truth- And Degree-preserving Aukasiewicz Logics
Coniglio; ME; Esteva; F; Godo; L -
On The Set Of Intermediate Logics Between The Truth- And Degree-preserving Aukasiewicz Logics
Coniglio; Marcelo E.; Esteva; Francesc; Godo; Lluis