info:eu-repo/semantics/article
Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation
Fecha
2018-03Registro en:
Medina, Rocio; David Gara, Pedro Maximiliano; Fernández González, Antonio José; Rosso, Janina Alejandra; del Panno, Maria Teresa; Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation; Elsevier; Science of the Total Environment; 618; 3-2018; 518-530
0048-9697
CONICET Digital
CONICET
Autor
Medina, Rocio
David Gara, Pedro Maximiliano
Fernández González, Antonio José
Rosso, Janina Alejandra
del Panno, Maria Teresa
Resumen
The impact of remediation combining chemical oxidation followed by biological treatment on soil matrix and microbial community was studied, of a chronically hydrocarbon contaminated soil sourced from a landfarming treatment. Oxidation by ammonium persulfate produced a significant elimination of polycyclic aromatic hydrocarbons (PAHs) and an increase in PAH bioavailability. Organic-matter oxidation mobilized nutrients from the soil matrix. The bacterial populations were affected negatively, with a marked diminution in the diversity indices. In this combined treatment with oxidation and bioremediation working in tandem, the aliphatic-hydrocarbon fractions were largely eliminated along with additional PAHs. The chemical and spectroscopic analyses indicated a change in soil nutrients. In spite of the high residual-sulfate concentration, a rapid recovery of the cultivable bacterial population and the establishment of a diverse and equitable microbial community were obtained. Pyrosequencing analysis demonstrated a marked succession throughout this twofold intervention in accordance with the chemical and biologic shifts observed. These remediation steps produced different effects on the soil physiology. Spectroscopic analysis became a useful tool for following and comparing those treatments, which involved acute changes in a matrix of such chronically hydrocarbon-contaminated soil. The combined treatment increased the elimination efficiency of both the aliphatic hydrocarbons and the PAHs at the expense of the mobilized organic matter, thus sustaining the recovery of the resilient populations throughout the treatment. The high-throughput–DNA-sequencing techniques enabled the identification of the predominant populations that were associated with the changes observed during the treatments.