info:eu-repo/semantics/article
Structural characterization of nanoemulsions stabilized with sodium caseinate and of the hydrogels prepared from them by acid-induced gelation
Fecha
2020-04Registro en:
Montes de Oca Avalos, Juan Manuel; Huck Iriart, Cristián; Borroni, Maria Virginia; Martínez, Karina Dafne; Candal, Roberto Jorge; et al.; Structural characterization of nanoemulsions stabilized with sodium caseinate and of the hydrogels prepared from them by acid-induced gelation; Elsevier; Current Research in Food Science; 3; 4-2020; 113-121
2665-9271
CONICET Digital
CONICET
Autor
Montes de Oca Avalos, Juan Manuel
Huck Iriart, Cristián
Borroni, Maria Virginia
Martínez, Karina Dafne
Candal, Roberto Jorge
Herrera, Maria Lidia
Resumen
Hydrogels obtained by acidification with glucono-δ-lactone (GDL), starting from nanoemulsions formulated with different concentrations of sodium caseinate (1–4 wt%) or 4 wt% sodium caseinate and sucrose (2–8 wt%), were prepared with the aim of quantifying structural parameters of both, initial nanoemulsions and hydrogels after 2.5 h of GDL addition, using the Guinier-Porod (GP) or the generalized GP models. Gelation process was followed by performing in situ temperature-controlled X-ray small angle scattering experiments (SAXS) using synchrotron radiation. In nanoemulsions, the calculated radius of gyration for oil nanodroplets (Rgoil) decreased with increasing protein concentration and for the 4 wt% protein nanoemulsion, with increasing sucrose content. Calculated values of Rgoil were validated correlating them with experimental Z-average values as measured by dynamic light scattering (DLS). For hydrogels, radii of gyration for the sphere equivalent to the hydrogel scattering object (Rgsph) were close to 3 nm while correlation distances among building blocks (Rg2) were dependent on formulation. They increased with increasing contents of sodium caseinate and sucrose. Rg2 parameter linearly correlated with hydrogel strength (G’∞): a more connected nanostructure led to a stronger hydrogel.