info:eu-repo/semantics/article
Column symmetric polynomials
Fecha
2019-09Registro en:
Dubuc, Eduardo Julio; kock, anders; Column symmetric polynomials; Amiens; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 60; 3; 9-2019; 241-254
0008-0004
CONICET Digital
CONICET
Autor
Dubuc, Eduardo Julio
kock, anders
Resumen
Nous étudions l’algébre des polynômes en une m x n matrice de variables sur un anneau contenant les rationnels, sujette à la condition que le produit de deux variables appartenant à une même colonne est nul. Nous montrons que la sous-algèbre des polynômes invariants sous l’action des n! permutations des colonnes est un quotient de l’algèbre des polynômes en m variables; l’application quotient envoie la i-ème variable en la somme des entrèes de la i- ème ligne de la matrice. Une application en gèomètrie diffèrentielle synthètique est esquissèe. We study the polynomial algebra (over a ring containing the rationals)in an m by n matrix of variables, and subject to the relation that saysthat the product of any two variables in the same column is zero. Weshow that the sub-algebra of polynomials, which are invariant under the n! permutations of the columns, is a quotient of the polynomial algebra in m variables; the quotient map sends the i´th variable to the sum of the entries in the i´th row of the matrix. An application in synthetic differential geometry is sketched.