info:eu-repo/semantics/article
Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products
Date
2021-09Registration in:
Hero, Johan Sebastian; Pisa, José Horacio; Romero, Cintia Mariana; Nordberg Karlsson, Eva; Linares Pastén, Javier A.; et al.; Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products; Springer; Applied Microbiology and Biotechnology; 9-2021
0175-7598
CONICET Digital
CONICET
Author
Hero, Johan Sebastian
Pisa, José Horacio
Romero, Cintia Mariana
Nordberg Karlsson, Eva
Linares Pastén, Javier A.
Martinez, Maria Alejandra
Abstract
The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-β-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (− 2 to + 1 in GH10 and − 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products. Key points • Cohnella sp. AR92 genome encoded five potential endo-xylanases. • Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields. • GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides. • GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides. Graphical abstract: [Figure not available: see fulltext.]