info:eu-repo/semantics/article
A Game Theoretic Model of Wealth Distribution
Fecha
2018-12Registro en:
Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; A Game Theoretic Model of Wealth Distribution; Springer; Dynamic Games and Applications; 8; 4; 12-2018; 874-890
2153-0793
CONICET Digital
CONICET
Autor
Pinasco, Juan Pablo
Rodriguez Cartabia, Mauro
Saintier, Nicolas Bernard Claude
Resumen
In this work, we consider an agent-based model in order to study the wealth distribution problem where the interchange is determined with a symmetric zero-sum game. Simultaneously, the agents update their way of play trying to learn the optimal one. Here, the agents use mixed strategies. We study this model using both simulations and theoretical tools. We derive the equations for the learning mechanism, and we show that the mean strategy of the population satisfies an equation close to the classical replicator equation. Concerning the wealth distribution, there are two interesting situations depending on the equilibrium of the game. For pure strategies equilibria, the wealth distribution is fixed after some transient time, and those players which initially were close to the optimal strategy are richer. When the game has an equilibrium in mixed strategies, the stationary wealth distribution is close to a Gamma distribution with variance depending on the coefficients of the game matrix. We compute theoretically their second moment in this case.