info:eu-repo/semantics/article
Insights on the combustion mechanism of ethanol and n-hexane in honeycomb monolithic type catalysts: Influence of the amount and nature of Mn-Cu mixed oxide
Fecha
2017-11Registro en:
Morales, Maria Roxana; Yeste, M. Pilar; Vidal, Hilario; Gatica, José M.; Cadus, Luis Eduardo; Insights on the combustion mechanism of ethanol and n-hexane in honeycomb monolithic type catalysts: Influence of the amount and nature of Mn-Cu mixed oxide; Elsevier; Fuel; 208; 11-2017; 637-646
0016-2361
CONICET Digital
CONICET
Autor
Morales, Maria Roxana
Yeste, M. Pilar
Vidal, Hilario
Gatica, José M.
Cadus, Luis Eduardo
Resumen
Mn-Cu mixed oxides were deposited by ultrasonic impregnation on ceramic honeycomb monoliths. Its catalytic performance was evaluated in the combustion of ethanol and n-hexane, VOC molecules of different chemical nature. The catalysts were characterized by N2 physisorption, SEM-EDS, XRD, X-ray fluorescence, XPS, TPR, TPD-O2 and OSC measurements. It was observed that the catalyst with the lowest content of Mn-Cu phase was the most active in the combustion of ethanol. This was attributed to the higher content of Mn4+ and the increase of lattice oxygen mobility, which would favor a Mars-van Krevelen type mechanism. The catalyst with a medium content of Mn-Cu, proved to be the most active in the combustion of n-hexane. This was associated with a high content of oxygen vacancies and easy availability of oxygen adsorbed on the surface, promoting the combustion of n-hexane, possibly through a Rideal-Eley type mechanism. The catalyst with the highest content of the Mn-Cu phase showed low activity in combustion of ethanol and n-hexane, which was attributed to a higher crystallinity of the Mn-Cu phases generated.