bachelorThesis
Flujos por curvatura en datos iniciales para las ecuaciones de Einstein : convexidad
Fecha
2022Autor
Brizuela, Jerónimo
Institución
Resumen
En este trabajo estudiamos las propiedades de distintos flujos geométricos dependientes de la curvatura media en variedades Riemannianas. Nos concentramos en la preservación de convexidad de superficies que evolucionan bajo este tipo de flujos y mostramos que esta propiedad se cumple, en espacios euclídeos, para una gran clase de los mismos. Hacemos hincapié en el Flujo de Curvatura Media Inversa y mostramos las dificultades que surgen al intentar demostrar la preservación de la convexidad para el caso general en variedades Riemannianas. In this work we study the properties of different geometric flows dependent on the mean curvature in Riemannian manifolds. We focus on convexity preservation of evolving surfaces by this type of flow and we show that this property holds, in Euclidean spaces, for a large class of these. We study in great detail the Inverse Mean Curvature Flow and show the difficulties that arise when trying to prove convexity preservation for the general case in Riemannian manifolds.