doctoralThesis
Relation-changing modal logics
Fecha
2014Autor
Fervari, Raúl Alberto
Institución
Resumen
En esta tesis investigamos operadores modales dinámicos que pueden cambiar el modelo durante la evaluación de una fórmula. En particular, extendemos el lenguaje modal básico con modalidades que son capaces de invertir, borrar o agregar pares de elementos relacionados. Estudiamos la versión local de los operadores (es decir,la realización de modificaciones desde el punto de evaluación) y la versión global(cambiar arbitrariamente el modelo). Investigamos varias propiedades de los lenguajes introducidos, desde un punto de vista abstracto. En primer lugar, se introduce la semántica formal de los modificadores de modelo, e inmediatamente se introduce una noción de bisimulación. Las bisimulaciones son una herramienta importante para investigar el poder expresivo de los lenguajes introducidos en esta tesis. Se demostró que todas los lenguajes son incomparables entre sí en términos de poder expresivo (a excepción de los dos versiones de swap, aunque conjeturamos que también ́en son incomparables). Continuamos por investigar el comportamiento computacional de este tipo de operadores. En primer lugar, demostramos que el problema de satisfactibilidad para las versiones locales de las lógicas que cambian la relación que investigamos es indecidible. También demostramos que el problema de model checking es PSPACE-completo para las seis lógicas. Finalmente, investigamos model checking fijando el modelo y fijando la fórmula (problemas conocidos como complejidad de fórmula y complejidad del programa, respectivamente). Es posible también definir métodos para comprobar satisfactibilidad que no necesariamente terminan. Introducimos métodos de tableau para las lógicas que cambian las relaciones y demostramos que todos estos métodos son correctos y completos y mostramos algunos aplicaciones. En la última parte de la tesis, se discute un contexto concreto en el que pueden aplicarse las lógicas modales que cambian la relación: Lógicas Dinámicas Epistémicas (DEL, por las siglas en inglés). Definimos una lógica que cambia la relación capaz de codificar DEL, e investigamos su comportamiento computacional. In this thesis we study dynamic modal operators that can change the model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to swap, delete or add pairs of related elements of the domain. We call the resulting logics Relation-Changing Modal Logics. We study local version of the operators (performing modifications from the evaluation point) and global version (changing arbitrarily edges in the model). We investigate several properties of the given languages, from an abstract point of view. First, we introduce the formal semantics of the model modifiers, afterwards we introduce a notion of bisimulation. Bisimulations are an important tool to investigate the expressive power of the languages introduced in this thesis. We show that all the languages are incomparable among them in terms of expressive power (except for the two versions of swap, which we conjecture are also incomparable). We continue by investigating the computational behaviour of this kind of operators. First, we prove that the satisfiability problem for some of the relation-changing modal logics we investigate is undecidable. Then, we prove that the model checking problem is PSpace-complete for the six
logics. Finally, we investigate model checking fixing the model and fixing the formula (problems known as formula and program complexity, respectively). We show that it is possible to define complete but non-terminating methods to check satisfiability. We
introduce tableau methods for relation-changing modal logics and we prove that all these methods are sound and complete, and we show some applications. In the last part of the thesis, we discuss a concrete context in which we can apply relation-changing modal logics: Dynamic Epistemic Logics (DEL). We motivate the use of the kind of logics that we investigate in this new framework, and we introduce some examples of DEL. Finally, we define a new relation-changing modal logic that embeds DEL and we investigate its computational behaviour.