article
Swap logic
Fecha
2014Registro en:
Autor
Areces, Carlos Eduardo
Fervari, Raúl Alberto
Hoffmann, Guillaume Emmanuel
Institución
Resumen
We investigate dynamic modal operators that can change the model during evaluation. We define the logic SL by extending the basic modal language with the ♦ modality, which is a diamond operator that in addition has the ability to invert pairs of related elements in the domain while traversing an edge of the accessibility relation. SL is very expressive: it fails to have the finite and the tree model property. We show that SL is equivalent to a fragment of first-order logic by providing a satisfiability preserving translation. In addition, we provide an equivalence preserving translation from SL to the hybrid logic H(:, ↓). We also define a suitable notion of bisimulation for SL and investigate its expressive power, showing that it lies strictly between the basic modal logic and H(:, ↓). We finally show that its model checking problem is PSpace-complete and its satisfiability problem is undecidable.