dc.creatorPicos, Kenia
dc.creatorOrozco Rosas, Ulises
dc.creatorDíaz Ramírez, Víctor H.
dc.creatorMontiel, Oscar
dc.date.accessioned2019-10-25T18:34:44Z
dc.date.accessioned2022-10-14T15:42:38Z
dc.date.available2019-10-25T18:34:44Z
dc.date.available2022-10-14T15:42:38Z
dc.date.created2019-10-25T18:34:44Z
dc.date.issued2018-10-31
dc.identifier1563-5147
dc.identifierhttps://repositorio.cetys.mx/handle/60000/120
dc.identifierScopus
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4256069
dc.description.abstractIn this paper, we propose an evolutionary correlation fltering approach for solving pose estimation in noncontinuous video sequences. Te proposed algorithm computes the linear correlation between the input scene containing a target in an unknown environment and a bank of matched flters constructed from multiple views of the target and estimates of statistical parameters of the scene. An evolutionary approach for fnding the optimal flter that produces the highest matching score in the correlator is implemented. Te parameters of the flter bank evolve through generations to refne the quality of pose estimation. Te obtained results demonstrate the robustness of the proposed algorithm in challenging image conditions such as noise, cluttered background, abrupt pose changes, and motion blur. Te performance of the proposed algorithm yields high accuracy in terms of objective metrics for pose estimation in noncontinuous video sequences.
dc.languageen_US
dc.relation2018;
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México
dc.subjectNoncontinuous Video Sequences
dc.subjectEvolutionary Correlation Filtering
dc.titlePose Estimation in Noncontinuous Video Sequences Using Evolutionary Correlation Filtering
dc.typeArticle


Este ítem pertenece a la siguiente institución