dc.creatorPicos, Kenia
dc.creatorOrozco Rosas, Ulises
dc.creatorCuesta-Infante, Alfredo
dc.creatorSanz, Antonio
dc.creatorPantrigo, Juan José
dc.date.accessioned2022-09-13T00:38:37Z
dc.date.available2022-09-13T00:38:37Z
dc.date.created2022-09-13T00:38:37Z
dc.date.issued2020-03
dc.identifierP21924
dc.identifierhttps://repositorio.cetys.mx/handle/60000/1468
dc.description.abstractPose estimation is an important task for novel engineering applications, such as virtual and augmented reality (VR/AR), pose-based video games, object reconstruction, target tracking, driving assistance and recent sports analytics. Commonly, an efficient pose estimation system depends on the pose visualization given by a 3D configuration of location, orientation, and scaling parameters of the target. In this work we implement Capsule Networks to solve 3D pose estimation in computer graphics of rigid objects using a multi-GPU architecture
dc.languageen_US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México
dc.subjectCapsule Networks
dc.subject3D pose estimation
dc.titleCapsule Networks for 3D Pose Estimation in Computer Graphics
dc.typePresentation


Este ítem pertenece a la siguiente institución