dc.creatorOrozco Rosas, Ulises
dc.creatorMontiel, Oscar
dc.creatorSepúlveda, Roberto
dc.date.accessioned2022-09-12T18:06:06Z
dc.date.accessioned2022-10-14T15:41:54Z
dc.date.available2022-09-12T18:06:06Z
dc.date.available2022-10-14T15:41:54Z
dc.date.created2022-09-12T18:06:06Z
dc.date.issued2018-01
dc.identifier1860-9503
dc.identifierhttps://repositorio.cetys.mx/handle/60000/1463
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4255651
dc.description.abstractPath planning is a fundamental task in autonomous mobile robot navigation and one of the most computationally intensive tasks. In this work, a parallel version of the bacterial potential field (BPF) method for path planning in mobile robots is presented. The BPF is a hybrid algorithm, which makes use of a bacterial evolutionary algorithm (BEA) with the artificial potential field (APF) method, to take advantage of intelligent and classical methods. The parallel bacterial potential field (parallel-BPF) algorithm is implemented on a graphics processing unit (GPU) to speed up the path planning computation in mobile robot navigation. Simulation results to validate the analysis and implementation are provided; the experiments were specially designed to show the effectiveness and the efficiency of the parallel-BPF algorithm.
dc.languageen_US
dc.publisherSpringer International Publishing AG
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México
dc.subjectBacterial potential field
dc.subjectPath planning
dc.subjectMobile robots
dc.subjectGPU
dc.titleFuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications
dc.typeBook chapter


Este ítem pertenece a la siguiente institución