dc.creatorViveros Rogel, Jorge
dc.date.accessioned2013-11-05T19:46:59Z
dc.date.accessioned2022-10-14T15:33:09Z
dc.date.available2013-11-05T19:46:59Z
dc.date.available2022-10-14T15:33:09Z
dc.date.created2013-11-05T19:46:59Z
dc.date.issued2008
dc.identifierGeng, J; Viveros, J.; Yi, Y. Quasi-periodic breathers in Hamiltonian networks with long-range coupling. Physica D, vol. 237 (2008), pp. 2866-2892 doi:10.1016/j.physd.2008.05.010
dc.identifierhttp://repository.uaeh.edu.mx/bitstream/handle/123456789/11384
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4253600
dc.description.abstractThis work is concerned with Hamiltonian networks of weakly and long-range coupled oscillators with either variable or constant on-sitefrequencies. We derive an infinite dimensional KAM-like theorem by which we establish that, given any N-sites of the lattice, there is a positivemeasure set of small amplitude, quasi-periodic breathers (solutions of the Hamiltonian network that are quasi-periodic in time and exponentiallylocalized in space) having N-frequencies which are only slightly deformed from the on-site frequencies.
dc.subjectFísica Matemática
dc.titleQuasi-periodic breathers in Hamiltonian networks of long-range coupling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución