dc.creatorItzá Ortiz, Benjamín Alfonso
dc.date.accessioned2013-11-04T22:15:25Z
dc.date.accessioned2022-10-14T15:33:04Z
dc.date.available2013-11-04T22:15:25Z
dc.date.available2022-10-14T15:33:04Z
dc.date.created2013-11-04T22:15:25Z
dc.date.issued2008
dc.identifierItza-Ortiz, B. and Phillips, N. C., Realization of a simple higher-dimensional noncommutative torus as a transformation group C*-algebra, Bulletin of the London Mathematical Society, 40 (2008) 217 226. Preprinted
dc.identifierhttp://repository.uaeh.edu.mx/bitstream/handle/123456789/11349
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4253564
dc.description.abstractLet be a nondegenerate skew symmetric real d × d matrix, and let A be the corresponding simple higher dimensional noncommutative torus. Suppose that d is odd, or that d 4 and the entries of are not contained in a quadratic extension of Q. Then A is isomorphic to the transformation group C*-algebra obtained from a minimal homeomorphism of a compact connected one dimensional space locally homeomorphic to the product of the interval and the Cantor set. The proof uses classification theory of C*-algebras.
dc.subjectFísica Matemática
dc.titleREALIZATION OF A SIMPLE HIGHER DIMENSIONAL NONCOMMUTATIVE TORUS AS A TRANSFORMATION GROUP C*-ALGEBRA
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución