dc.creator | De la Rosa Vargas, José Ismael | |
dc.creator | Fleury, Gilles | |
dc.creator | Davoust, Marie Eve | |
dc.date.accessioned | 2020-04-14T19:18:24Z | |
dc.date.accessioned | 2022-10-14T15:16:19Z | |
dc.date.available | 2020-04-14T19:18:24Z | |
dc.date.available | 2022-10-14T15:16:19Z | |
dc.date.created | 2020-04-14T19:18:24Z | |
dc.date.issued | 2003-08 | |
dc.identifier | 0018-9456 | |
dc.identifier | 1557-9662 | |
dc.identifier | http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1646 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4248564 | |
dc.description.abstract | The purpose of this paper is to investigate the selection of an appropriate kernel to be used in a recent robust approach called minimum-entropy estimator (MEE). This MEE estimator is extended to measurement estimation and pdf approximation when p(e) is unknown. The entropy criterion is constructed on the basis of a symmetrized kernel estimate p_hat (e) of p(e). The MEE performance is generally better than the Maximum Likelihood (ML) estimator. The bandwidth selection procedure is a crucial task to assure consistency of kernel estimates. Moreover, recent proposed Hilbert kernels avoid the use of bandwidth, improving the consistency of the kernel estimate. A comparison between results obtained with normal, cosine and Hilbert kernels is presented. | |
dc.language | eng | |
dc.publisher | IEEE Transactions on Instrumentation and Measurement | |
dc.relation | generalPublic | |
dc.relation | 10.1109/TIM.2003.814816 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | |
dc.source | IEEE Transactios on Instrumentation and Measurement, Vol. 52, No. 4, August 2003, pp. 1009-1020 | |
dc.title | Minimum-Entropy, PDF Approximation, and Kernel Selection for Measurement Estimation | |
dc.type | Artículos de revistas | |