dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorFleury, Gilles
dc.creatorDavoust, Marie Eve
dc.date.accessioned2020-04-14T19:18:24Z
dc.date.accessioned2022-10-14T15:16:19Z
dc.date.available2020-04-14T19:18:24Z
dc.date.available2022-10-14T15:16:19Z
dc.date.created2020-04-14T19:18:24Z
dc.date.issued2003-08
dc.identifier0018-9456
dc.identifier1557-9662
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1646
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4248564
dc.description.abstractThe purpose of this paper is to investigate the selection of an appropriate kernel to be used in a recent robust approach called minimum-entropy estimator (MEE). This MEE estimator is extended to measurement estimation and pdf approximation when p(e) is unknown. The entropy criterion is constructed on the basis of a symmetrized kernel estimate p_hat (e) of p(e). The MEE performance is generally better than the Maximum Likelihood (ML) estimator. The bandwidth selection procedure is a crucial task to assure consistency of kernel estimates. Moreover, recent proposed Hilbert kernels avoid the use of bandwidth, improving the consistency of the kernel estimate. A comparison between results obtained with normal, cosine and Hilbert kernels is presented.
dc.languageeng
dc.publisherIEEE Transactions on Instrumentation and Measurement
dc.relationgeneralPublic
dc.relation10.1109/TIM.2003.814816
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceIEEE Transactios on Instrumentation and Measurement, Vol. 52, No. 4, August 2003, pp. 1009-1020
dc.titleMinimum-Entropy, PDF Approximation, and Kernel Selection for Measurement Estimation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución