dc.contributorhttps://orcid.org/0000-0001-8373-1535
dc.creatorMartínez Orozco, Juan Carlos
dc.creatorRodríguez Vargas, Isaac
dc.creatorMora Ramos, Miguel
dc.date.accessioned2019-03-19T20:18:46Z
dc.date.available2019-03-19T20:18:46Z
dc.date.created2019-03-19T20:18:46Z
dc.date.issued2009
dc.identifier1742-6588
dc.identifierhttp://localhost/xmlui/handle/20.500.11845/817
dc.identifierhttps://doi.org/10.48779/94m7-ex50
dc.description.abstractThe p-delta-doping in diamond allows to create high density two-dimensional hole gases. This technique has already been applied in the design and fabrication of diamond-based field effect transistors. Consequently, the knowledge of the electronic structure is of significant importance to understand the transport properties of diamond p-delta-doped systems. In this work the hole subbands of diamond p-type delta-doped quantum wells are studied within the framework of a local-density Thomas-Fermi-based approach for the band bending profile. The calculation incorporates an independent three-hole-band scheme and considers the effects of the contact potential, the delta-channel to contact distance, and the ionized impurity density.
dc.languageeng
dc.publisherIOP PUBLISHING
dc.relationgeneralPublic
dc.relationhttps://iopscience.iop.org/article/10.1088/1742-6596/167/1/012065/meta
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.sourceJournal of Physics: Conference Series, Vol. 167, No. 1 pp. 1-5
dc.titleHole states in diamond p-delta-doped field effect transistors
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución