dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorMiramontes de León, Gerardo
dc.date.accessioned2020-04-15T17:48:58Z
dc.date.accessioned2022-10-14T15:15:40Z
dc.date.available2020-04-15T17:48:58Z
dc.date.available2022-10-14T15:15:40Z
dc.date.created2020-04-15T17:48:58Z
dc.date.issued2008-10
dc.identifier0018-9456
dc.identifier1557-9662
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1675
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4248247
dc.description.abstractThe purpose of this paper is to present a comparison of different techniques for making statistical inference about a measurement system model. This comparison involves results when two main assumptions are made: 1) the unknowable behavior of the probability density function (pdf) p(e) of errors since the real measurement systems are always exposed to continuous perturbations of an unknown nature and 2) the assumption that, after some experimentation, one can obtain sufficient information that can be incorporated into the modeling as prior information.
dc.languageeng
dc.publisherIEEE Instrumentation and Measurement Society
dc.relationgeneralPublic
dc.relationDOI: 10.1109/TIM.2008.922098
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceIEEE Trans. on Instrumentation and Measurement, Vol. 57, No. 10, pp. 2169-2180, October 2008.
dc.titleA Statistical Inference Comparison for Measurement Estimation Using Stochastic Simulation Techniques
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución