dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorFleury, Gilles
dc.creatorOsuna, Sonia Esther
dc.creatorDavoust, Marie Eve
dc.date.accessioned2020-04-14T20:09:09Z
dc.date.accessioned2022-10-14T15:15:35Z
dc.date.available2020-04-14T20:09:09Z
dc.date.available2022-10-14T15:15:35Z
dc.date.created2020-04-14T20:09:09Z
dc.date.issued2006-02
dc.identifier0018- 9456
dc.identifier1557-9662
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1655
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4248201
dc.description.abstractThe purpose of this paper is to present a new approach for measurand uncertainty characterization. The Márkov chain Monte Carlo (MCMC) is applied to measurand probability density function (pdf) estimation, which is considered as an inverse problem. The measurement characterization is driven by the pdf estimation in a nonlinear Gaussian framework with unknown variance and with limited observed data. These techniques are applied to a realistic measurand problem of groove dimensioning using remote field eddy current (RFEC) inspection. The application of resampling methods such as bootstrap and the perfect sampling for convergence diagnostics purposes gives large improvements in the accuracy of the MCMC estimates.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relationgeneralPublic
dc.relationDOI: 10.1109/TIM.2005.861495
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceIEEE Transaction on Instrumentation and Measurement, Vol. 55, No. 1, febrero 2006, pp. 112-122
dc.titleMarkov Chain Monte Carlo Posterior Density Approximation for a Groove Dimensioning Purpose
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución