dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorGutiérrez, Osvaldo
dc.creatorVilla Hernández, Jesús
dc.creatorMoreno, Gamaliel
dc.creatorGonzález, Efrén
dc.creatorAlaniz, Daniel
dc.date.accessioned2021-04-15T18:06:33Z
dc.date.accessioned2022-10-14T15:15:04Z
dc.date.available2021-04-15T18:06:33Z
dc.date.available2022-10-14T15:15:04Z
dc.date.created2021-04-15T18:06:33Z
dc.date.issued2021-01-14
dc.identifier1380-7501
dc.identifier1573-7721
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2292
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4247913
dc.description.abstractIn this work we introduce a new approach for robust image segmentation. The idea is to combine two strategies within a Bayesian framework. The first one is to use a Markov Random Field (MRF), which allows to introduce prior information with the purpose of preserve the edges in the image. The second strategy comes from the fact that the probability density function (pdf) of the likelihood function is non Gaussian or unknown, so it should be approximated by an estimated version, and for this, it is used the classical non-parametric or kernel density estimation. This two strategies together lead us to the definition of a new maximum a posteriori (MAP) approach based on the minimization of the entropy of the estimated pdf of the likelihood function and the MRF at the same time, named MAP entropy estimator (MAPEE). Some experiments were conducted for different kind of images degraded with impulsive noise and other non-Gaussian distributions, where the segmentation results are very satisfactory comparing them with respect to recent robust approaches based on the fuzzy c-means (FCM) segmentation.
dc.languageeng
dc.publisherSpringer
dc.relationgeneralPublic
dc.relationhttps://doi.org/10.1007/s11042-020-09999-9
dc.titleEntropy estimation for robust image segmentation in presence of non Gaussian noise
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución