dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorFleury, Gilles
dc.date.accessioned2020-04-14T19:58:34Z
dc.date.accessioned2022-10-14T15:14:42Z
dc.date.available2020-04-14T19:58:34Z
dc.date.available2022-10-14T15:14:42Z
dc.date.created2020-04-14T19:58:34Z
dc.date.issued2006-06
dc.identifier0018-9456
dc.identifier1557-9662
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1654
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4247715
dc.description.abstractIn this paper, a new approach for the statistical characterization of a measurand is presented. A description of how different bootstrap techniques can be applied in practice to estimate successfully a measurand probability density function (pdf) is given. When the direct observation of a quantity of interest is practically impossible such as in nondestructive testing, it is necessary to estimate such quantity, which is also called measurand. The statistical characterization of any estimator is important, because all the uncertainty features can be accessible to qualify such estimator. On the other hand, most of the time, the large-scale repetition of an experiment is not economically feasible, so that the Monte Carlo methods cannot be used directly for uncertainty characterization.
dc.languageeng
dc.publisherIEEE Instrumentation and Measurement Society
dc.relationgeneralPublic
dc.relationDOI: 10.1109/TIM.2006.873779
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceTransaction on Instrumentation and Measurement, Vol. 55, No. 3, junio 2006, pp. 820-827
dc.titleBootstrap Methods for a Measurement Estimation Problem
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución