dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorVilla Hernández, José de Jesús
dc.creatorDe la Rosa Miranda, Enrique
dc.creatorGonzález Ramírez, Efrén
dc.creatorGutierrez, Osvaldo
dc.creatorEscalante, Nivia
dc.creatorIvanov, Rumen
dc.creatorFleury, Gilles
dc.date.accessioned2020-04-16T18:24:07Z
dc.date.accessioned2022-10-14T15:14:33Z
dc.date.available2020-04-16T18:24:07Z
dc.date.available2022-10-14T15:14:33Z
dc.date.created2020-04-16T18:24:07Z
dc.date.issued2013-07
dc.identifier1990-2573
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1708
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4247637
dc.description.abstractWe introduce a new approach for image filtering in a Bayesian framework. In this case the probability density function (pdf) of the likelihood function is approximated using the concept of non-parametric or kernel estimation. The method is based on the generalized Gaussian Markov random fields (GGMRF), a class of Markov random fields which are used as prior information into the Bayesian rule, which principal objective is to eliminate those effects caused by the excessive smoothness on the reconstruction process of images which are rich in contours or edges. Accordingly to the hypothesis made for the present work, it is assumed a limited knowledge of the noise pdf, so the idea is to use a non-parametric estimator to estimate such a pdf and then apply the entropy to construct the cost function for the likelihood term. The previous idea leads to the construction of Maximum a posteriori (MAP) robust estimators, since the real systems are always exposed to continuous perturbations of unknown nature. Some promising results of three new MAP entropy estimators (MAPEE) for image filtering are presented, together with some concluding remarks.
dc.languageeng
dc.publisherEuropean Optical Society
dc.relationgeneralPublic
dc.relationhttps://www.jeos.org/index.php/jeos_rp/article/view/13047
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceJournal of the European Optical Society-Rapid Publication, Vol. 8, No. 13047, pp. 1-7
dc.titleMAP entropy estimation: Applications in robust image filtering
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución