dc.contributorhttps://orcid.org/0000-0002-7337-8974
dc.contributorhttps://orcid.org/0000-0002-8060-6170
dc.creatorGutiérrez, Osvaldo
dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorVilla Hernández, José de Jesús
dc.creatorGonzález Ramírez, Efrén
dc.creatorEscalante, Nivia
dc.date.accessioned2020-04-15T17:53:49Z
dc.date.available2020-04-15T17:53:49Z
dc.date.created2020-04-15T17:53:49Z
dc.date.issued2012-03
dc.identifier1094-4087
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1676
dc.identifierhttps://doi.org/10.48779/w786-r594
dc.description.abstractIn this work, a novel model of Markov Random Field (MRF) is introduced. Such a model is based on a proposed Semi-Huber potential function and it is applied successfully to image segmentation in presence of noise. The main difference with respect to other half-quadratic models that have been taken as a reference is, that the number of parameters to be tuned in the proposed model is smaller and simpler. The idea is then, to choose adequate parameter values heuristically for a good segmentation of the image. In that sense, some experimental results show that the proposed model allows an easier parameter adjustment with reasonable computation times.
dc.languageeng
dc.publisherOsa Publishing
dc.relationgeneralPublic
dc.relationhttps://doi.org/10.1364/OE.20.006542
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceOptics Express, Vol. 20, No. 6, marzo de 2012, pp. 6542-6554
dc.titleSemi-Huber potential function for image segmentation
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución