dc.creatorDe la Rosa, José Ismael
dc.creatorFleury, Gilles
dc.creatorOsuna, Sonia
dc.date.accessioned2020-04-23T17:07:25Z
dc.date.accessioned2022-10-14T15:13:58Z
dc.date.available2020-04-23T17:07:25Z
dc.date.available2022-10-14T15:13:58Z
dc.date.created2020-04-23T17:07:25Z
dc.date.issued2003-05
dc.identifier0-7803-7705-2
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1823
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4247324
dc.description.abstractThe purpose of this paper is to present a new approach for measurement uncertainty characterization. The Markov Chain Monte Carlo (MCMC) is applied to measurement pdf estimation, which is considered as an inverse problem. The measurement characterization is driven by the pdf estimation in a non-linear Gaussian framework with unknown variance and with limited observed data. Multidimensional integration and support searching, are driven by the Metropolis-Hastings (M-H) autoregressive algorithm which performance is generally better than the M-H random walk. These techniques are applied to a realistic measurement problem of Groove dimensioning using Remote Field Eddy Current (RFEC) inspection. The application of resampling methods such as bootstrap and the perfect sampling for convergence diagnostics purposes, gives large improvements in the accuracy of the MCMC estimates.
dc.languageeng
dc.publisherIEEE
dc.relationgeneralPublic
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceIEEE Instrumentation and Measurement Technology Conf. IMTC-2003, Vol. 1, pp. 478-483, Vail, Colorado (USA), 20-22 May 2003.
dc.titleDensity estimation for measurement purposes and convergence improvement using MCMC
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución