dc.contributorhttps://orcid.org/0000-0002-7337-8974
dc.contributorhttps://orcid.org/0000-0002-8060-6170
dc.creatorBecerra, Aldonso
dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorGonzález Ramírez, Efrén
dc.creatorPedroza, David
dc.creatorEscalante, Iracemi
dc.creatorSantos, Eduardo
dc.date.accessioned2020-04-17T20:02:33Z
dc.date.available2020-04-17T20:02:33Z
dc.date.created2020-04-17T20:02:33Z
dc.date.issued2020-03
dc.identifier1380-7501
dc.identifier1573-7721
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1727
dc.identifierhttps://doi.org/10.48779/crw1-0409
dc.description.abstractTraining procedures of a deep neural network are still an area with ample research possibilities and constant improvement either to increase its efficiency or its time performance. One of the lesser-addressed components is its objective function, which is an underlying aspect to consider when there is the necessity to achieve better error rates in the area of automatic speech recognition. The aim of this paper is to present two new variations of the frame-level cost function for training a deep neural network with the purpose of obtaining superior word error rates in speech recognition applied to a case study in Spanish.
dc.languageeng
dc.publisherSpringer
dc.relationgeneralPublic
dc.relationhttps://doi.org/10.1007/s11042-020-08782-0
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceMultimedia Tools Applications, Vol. 79 / 80, marzo 2020
dc.titleA comparative case study of neural network training by using frame-level cost functions for automatic speech recognition purposes in Spanish
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución