dc.contributorhttps://orcid.org/0000-0002-7337-8974
dc.contributorhttps://orcid.org/0000-0002-9498-6602
dc.contributor0000-0002-9498-6602
dc.creatorNematollahi, Mohammad Ali
dc.creatorVorakulpipat, Chalee
dc.creatorGamboa Rosales, Hamurabi
dc.creatorMartínez Ruíz, Francisco Javier
dc.creatorDe la Rosa Vargas, José Ismael
dc.date.accessioned2020-04-14T19:43:29Z
dc.date.available2020-04-14T19:43:29Z
dc.date.created2020-04-14T19:43:29Z
dc.date.issued2017-07
dc.identifier0369-8203
dc.identifier2250-1762
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1652
dc.identifierhttps://doi.org/10.48779/g9zy-0c11
dc.description.abstractIn this paper different digital audio watermarking techniques have been proposed. Currently, more attention is given to combination of Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) techniques for watermarking purpose. Available DWT–SVD audio watermarking techniques cannot be applied to speech signals efficiently. However, Linear Predictive Analysis (LPA) technique can model digital speech signals (20–30 ms) in more flexible and efficient ways than DWT. In this paper, a novel digital speech watermarking technique is proposed by applying both LPA and SVD.
dc.languageeng
dc.publisherSpringer
dc.relationgeneralPublic
dc.relationhttps://doi.org/10.1007/s40010-017-0371-8
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceProceedings of the National Academy of Sciences, India Section A: Physical Sciences. Vol. 87, 2017, pp. 433–446
dc.titleDigital Speech Watermarking Based on Linear PredictiveAnalysis and Singular Value Decomposition
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución