dc.relation | [1] Burdock, G. A., & Carabin, I. G. (2009). Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. Food and Chemical Toxicology, 47(1), 22-34.
[2] Delaquis, P. J., Stanich, K., Girard, B., & Mazza, G. (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International journal of food microbiology, 74(1), 101-109.
[3] Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American journal of clinical nutrition, 78(3), 517S-520S
[4] Khan, I. A., & Abourashed, E. A. (2011). Leung's encyclopedia of common natural ingredients: used in food, drugs and cosmetics. John Wiley & Sons.
[5] Cross, S. E., Jin, Y. S., Lu, Q. Y., Rao, J., & Gimzewski, J. K. (2011). Green tea extract selectively targets nanomechanics of live metastatic cancer cells. Nanotechnology, 22(21), 215101.
[6] Farnsworth, N. R., Akerele, O., Bingel, A. S., Soejarto, D. D., & Guo, Z. (1985). Medicinal plants in therapy. Bulletin of the world health organization, 63(6), 965.
[7] Wichtl, M. (2004). Herbal drugs and phytopharmaceuticals: a handbook for practice on a scientific basis (No. Ed. 3). Medpharm GmbH Scientific Publishers.
[8] Quideau, S., Deffieux, D., Douat‐Casassus, C., & Pouységu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 50(3), 586-621].
[9] Farnsworth, N. R., Soejarto, D. D. (1991). Global importance of medicinal plants. The conservation of medicinal plants, 25-51.
[10] Hoffmann, J. P. (1998). Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34(5), 757-763.
[11] Kolawole, O. M. (2006). Studies on the Efficacy of Bridelia Ferruginea Benth. Bark Extract in Reducing the Coliform Load and BOD of Domestic Wastewater. Ethnobotanical Leaflets, 2006(1), 24.
[12] Nune, S. K., Chanda, N., Shukla, R., Katti, K., Kulkarni, R. R., Thilakavathy, S., ... & Katti, K. V. (2009). Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. Journal of materials chemistry, 19(19), 2912-2920.].
[13] Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650.
[14] Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in biotechnology, 31(4), 240-248.
[15] Perales-Martínez, I. A., Rodríguez-González, V., Lee, S. W., & Obregón, S. (2015). Facile synthesis of InVO 4/TiO 2 heterojunction photocatalysts with enhanced photocatalytic properties under UV–vis irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 299, 152-158.
[16] Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, et al. (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters 78(9): 1667-1670.
[17] Hierold, C., Jungen, A., Stampfer, C., & Helbling, T. (2007). Nano electromechanical sensors based on carbon nanotubes. Sensors and Actuators A: Physical, 136(1), 51-61.
[18] Bulte, J. W., & Kraitchman, D. L. (2004). Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomedicine, 17(7), 484-499.
[19] Gao, X., Cui, Y., Levenson, R. M., Chung, L. W., & Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology, 22(8), 969-976.
[20] Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology, 2(12), 751-760.
[21] Ito, A., Kuga, Y., Honda, H., Kikkawa, H., Horiuchi, A., Watanabe, Y., & Kobayashi, T. (2004). Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer letters, 212(2), 167-175.
[22] Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2008). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in medical science, 23(3), 217-228.
[23] Gatti AM (2014) Nanomedicine and Nanopathology: Two Opposite Aspects of Nanotechnologies. J Nanomed Res 1(2): 00008. DOI: 10.15406/jnmr.2014.01.00008
[24] AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano 3(2): 279-290.
[25] Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25): 255102.
[26] Johari SA (2014) Toxicity Effect of Colloidal Silver Nanoparticles on Fertilization Capacity and Reproduction Success of Rainbow Trout (Oncorhynchus mykiss). J Nanomed Res 1(1): 00001.
[27] Prathna, T. C., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces, 82(1), 152-159.
[28] Bankar, A., Joshi, B., Kumar, A. R., & Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368(1), 58-63.
[29] Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., Pyne, S., & Misra, A. (2009). Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348(1), 212-216.
[30] Sathishkumar, M., Sneha, K., Won, S. W., Cho, C. W., Kim, S., & Yun, Y. S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces, 73(2), 332-338.
[31] Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem., 9(8), 852-858.
[32] Mendoza-Reséndez, R., Núnez, N. O., Barriga-Castro, E. D., & Luna, C. (2013). Synthesis of metallic silver nanoparticles and silver organometallic nanodisks mediated by extracts of Capsicum annuum var. aviculare (piquin) fruits. RSC Advances, 3(43), 20765-20771.
[33] Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and biosystems engineering, 32(1), 79-84.
[34] Philip, D. (2009). Honey mediated green synthesis of gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(4), 650-653.
[35] Philip, D. (2010). Honey mediated green synthesis of silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(3), 1078-1081.
[36] Reddy, S. M., Datta, K. K. R., Sreelakshmi, C., Eswaramoorthy, M., & Reddy, B. V. (2012). Honey mediated green synthesis of Pd nanoparticles for suzuki coupling and hydrogenation of conjugated olefins. Nanoscience and Nanotechnology Letters, 4(4), 420-425.
[37] Venu, R., Ramulu, T. S., Anandakumar, S., Rani, V. S., & Kim, C. G. (2011). Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1), 733-738.
[38] Mendoza-Reséndez, R., Gómez-Treviño, A., Barriga-Castro, E. D., Núñez, N. O., & Luna, C. (2014). Synthesis of antibacterial silver-based nanodisks and dendritic structures mediated by royal jelly. RSC Advances, 4(4), 1650-1658.
[39] Sathishkumar, M., Pavagadhi, S., Mahadevan, A., & Balasubramanian, R. (2014). Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells. Ecotoxicology and environmental safety.
[40] Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances 27(1): 76-83.
[41] Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, et al. (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31): 6333-6340.
[42] Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, et al. (2005) Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3(6): 1-10.
[43] Antony, J. J., Sivalingam, P., Siva, D., Kamalakkannan, S., Anbarasu, K., Sukirtha, R., ... & Achiraman, S. (2011). Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose. Colloids and Surfaces B: Biointerfaces, 88(1), 134-140.
[44] Satyavani, K., & Gurudeeban, S. S. (2014). Green Revolution towards Nanobiotechnology. J Nanomed Res, 1(3), 00014.
[45] Criado, C. L. (2014). Huge Avenues of Opportunities (With Some Potholes) Opened by the Very Small Things. J Nanomed Res, 1(1), 00005.
[46] Kim, Y. I., Kim, D., & Lee, C. S. (2003). Synthesis and characterization of CoFe 2 O 4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B: Condensed Matter, 337(1), 42-51.
[47] Lu, Y., Yin, Y., Mayers, B. T., & Xia, Y. (2002). Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano letters, 2(3), 183-186.
[48] Luna, C., Barriga-Castro, E. D., & Mendoza-Reséndez, R. (2014). The effects of aging time on the size, morphology, oriented attachment and magnetic behavior of hematite nanocrystals synthesized by forced hydrolysis of Fe III solutions. Acta Materialia, 66, 405-413.
[49] Jia, C. J., Sun, L. D., Yan, Z. G., Pang, Y. C., You, L. P., & Yan, C. H. (2007). Iron oxide tube-in-tube nanostructures. The Journal of Physical Chemistry C, 111(35), 13022-13027.
[50] William, W. (2004). Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chemical Communications, (20), 2306-2307.
[51] Fievet, F., Lagier, J. P., Blin, B., Beaudoin, B., & Figlarz, M. (1989). Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics, 32, 198-205.
[52] Sun, Y., & Xia, Y. (2002). Large‐Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self‐Seeding, Polyol Process. Advanced Materials, 14(11), 833-837.
[53] Luna, C., Morales, M. P., Serna, C. J., & Vazquez, M. (2003). Effects of surfactants on the particle morphology and self-organization of Co nanocrystals. Materials Science and Engineering: C, 23(6), 1129-1132.
[54] Prida, V. M., García, J., Iglesias, L., Vega, V., Görlitz, D., Nielsch, K., ... & Luna, C. (2013). Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. Nanoscale research letters, 8(1), 1-7.
[55] Pan, Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y., & Wang, G. (1999). Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chemical Physics Letters, 299(1), 97-102.
[56] Li, S., Shen, Y., Xie, A., Yu, X., Zhang, X., Yang, L., & Li, C. (2007). Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology, 18(40), 405101.
[57] Luna, C., Chávez, V. H. G., Barriga-Castro, E. D., Núñez, N. O., & Mendoza-Reséndez, R. (2015). Biosynthesis of Silver Fine Particles and Particles Decorated with Nanoparticles Using the Extract of Illicium Verum (Star Anise) Seeds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. | |