info:eu-repo/semantics/article
Using the Web as corpus for self-training text categorization
Autor
RAFAEL GUZMAN CABRERA
MANUEL MONTES Y GOMEZ
Paolo ROSSO
LUIS VILLASEÑOR PINEDA
Institución
Resumen
Most current methods for automatic text categorization are based on supervised learning techniques and, therefore, they face the problem of requiring a great number of training instances to construct an accurate classifier. In order to tackle this problem, this paper proposes a new semi-supervised method for text categorization, which considers the automatic extraction of unlabeled examples from the Web and the application of an enriched self-training approach for the construction of the classifier. This method, even though language independent, is more pertinent for scenarios where large sets of labeled resources do not exist. That, for instance, could be the case of several application domains in different non-English languages such as Spanish. The experimental evaluation of the method was carried out in three different tasks and in two different languages. The achieved results demonstrate the applicability and usefulness of the proposed method.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Material de empaque para biofiltración con base en poliuretano modificado con almidón, metodos para la manufactura del mismo y sistema de biofiltración
OLGA BRIGIDA GUTIERREZ ACOSTA; VLADIMIR ALONSO ESCOBAR BARRIOS; SONIA LORENA ARRIAGA GARCIA