dc.creatorRojas,Jacqueline
dc.creatorMendoza,Ramón
dc.creatorSilva,Eben da
dc.date2010-01-01
dc.date.accessioned2017-03-07T16:37:33Z
dc.date.available2017-03-07T16:37:33Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100017
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/404784
dc.descriptionWe give an explicit description of the Hilbert scheme that parametrizes the closed 0-dimensional subschemes of degree 4 in the projective plane that allows us to afford a natural embedding in a product of Grassmann varieties. We also use this description to explain how to apply Bott's localization formula (introduced in 1967 in Bott's work [2]) to give an answer for an enumerative question as used by the first time by Ellingsrud and Str<img border=0 width=12 height=15 src="http://fbpe/img/cubo/v12n1/img47.jpg">mme in [8] to compute the number of twisted cubics on a general Calabi-Yau threefold which is a complete intersection in some projective space and used later by Kontsevich in [16] to count rational plane curves of degree d passing through 3d - 1 points in general position in the plane.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de La Frontera. Departamento de Matemática y Estadística
dc.publisherUniversidade Federal de Pernambuco. Departamento de Matemática
dc.sourceCubo (Temuco) v.12 n.1 2010
dc.subjectHilbert scheme
dc.subjectBott's localization formula
dc.titleProjective Squares in and Bott's Localization Formula
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución