dc.creatorRozenblum,Grigori
dc.creatorShirokov,Nikolay
dc.date2010-01-01
dc.date.accessioned2017-03-07T16:37:33Z
dc.date.available2017-03-07T16:37:33Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100011
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/404778
dc.descriptionFor a real non-signdefinite function B(z), z ∈C, we investigate the dimension of the space of entire analytical functions square integrable with weight e ±2F , where the function F(z) = F(x1, x2) satisfies the Poisson equation ΔF = B. The answer is known for the function B with constant sign. We discuss some classes of non-signdefinite positively homogeneous functions B, where both infinite and zero dimension may occur. In the former case we present a method of constructing entire functions with prescribed behavior at infinity in different directions. The topic is closely related with the question of the dimension of the zero energy subspace (zero modes) for the Pauli operator.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de La Frontera. Departamento de Matemática y Estadística
dc.publisherUniversidade Federal de Pernambuco. Departamento de Matemática
dc.sourceCubo (Temuco) v.12 n.1 2010
dc.subjectPauli operators
dc.subjectZero modes
dc.subjectEntire functions
dc.titleEntire Functions in Weighted L2 and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución