dc.creatorRaymond,Nicolas
dc.date2010-01-01
dc.date.accessioned2017-03-07T16:37:32Z
dc.date.available2017-03-07T16:37:32Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100007
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/404774
dc.descriptionThe aim of this paper is to establish uniform estimates of the bottom of the spectrum of the Neumann realization of <img src="http:/fbpe/img/cubo/v12n1/img9.jpg" width="113" height="14"> on a bounded open set <img src="http:/fbpe/img/cubo/v12n1/img11.jpg" width="14" height="15">with smooth boundary when<img src="http:/fbpe/img/cubo/v12n1/img10.jpg" width="210" height="18">. This problem was motivated by a question occurring in the theory of liquid crystals and appears also in superconductivity questions in large domains.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de La Frontera. Departamento de Matemática y Estadística
dc.publisherUniversidade Federal de Pernambuco. Departamento de Matemática
dc.sourceCubo (Temuco) v.12 n.1 2010
dc.subjectSpectral theory
dc.subjectsemiclassical analysis
dc.subjectNeumann Laplacian
dc.subjectmagnetic field
dc.subjectliquid crystals
dc.titleUniform Spectral Estimates for Families of Schrödinger Operators with Magnetic Field of Constant Intensity and Applications
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución