dc.creatorBoni,Théodore K
dc.creatorNabongo,Diabaté
dc.date2010-01-01
dc.date.accessioned2017-03-07T16:37:32Z
dc.date.available2017-03-07T16:37:32Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000100004
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/404771
dc.descriptionIn this paper, under some conditions, we show that the solution of a discrete form of a nonlocal parabolic problem quenches in a finite time and estimate its numerical quenching time. We also prove that the numerical quenching time converges to the real one when the mesh size goes to zero. Finally, we give some computational results to illustrate our analysis.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de La Frontera. Departamento de Matemática y Estadística
dc.publisherUniversidade Federal de Pernambuco. Departamento de Matemática
dc.sourceCubo (Temuco) v.12 n.1 2010
dc.subjectNonlocal diffusion
dc.subjectquenching
dc.subjectnumerical quenching time
dc.titleQuenching for Discretizations of a Nonlocal Parabolic Problem with Neumann Boundary Condition
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución