dc.creatorRump,Wolfgang
dc.date2010-01-01
dc.date.accessioned2017-03-07T16:36:23Z
dc.date.available2017-03-07T16:36:23Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000200007
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/404491
dc.descriptionThe product formula of algebraic number theory connects finite and infinite primes in a stringent way, a fact, while not hard to be checked, that has never ceased to be tantalizing. We propose a new concept of prime for any field and investigate some of its properties. There are algebraic primes, corresponding to valuations, such that every prime contains a largest algebraic one. For a number field, this algebraic part is zero just for the infinite primes. It is shown that the primes of any field form a tree with a kind of self-similar structure, and there is a binary operation on the primes, unexplored even for the rationals. Every prime defines a topology on the field, and each compact prime gives rise to a unique Haar measure, playing an essential part in the product formula.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de La Frontera. Departamento de Matemática y Estadística
dc.publisherUniversidade Federal de Pernambuco. Departamento de Matemática
dc.sourceCubo (Temuco) v.12 n.2 2010
dc.subjectprime
dc.subjectvaluation
dc.subjectproduct formula
dc.titleThe tree of primes in a field
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución