dc.creatorManaka,Hiroko
dc.creatorTakahashi,Wataru
dc.date2011-01-01
dc.date.accessioned2017-03-07T16:36:12Z
dc.date.available2017-03-07T16:36:12Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000100002
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/404426
dc.descriptionLet C be a closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping of C into itself, let A be an α-inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. We introduce an iterative sequence of finding a point of F(T)∩(A+B)(-1)0, where F(T) is the set of fixed points of T and (A + B)(-1)0 is the set of zero points of A + B. Then, we obtain the main result which is related to the weak convergence of the sequence. Using this result, we get a weak convergence theorem for finding a common fixed point of a nonspreading mapping and a nonexpansive mapping in a Hilbert space. Further, we consider the problem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonspreading mapping.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de La Frontera. Departamento de Matemática y Estadística
dc.publisherUniversidade Federal de Pernambuco. Departamento de Matemática
dc.sourceCubo (Temuco) v.13 n.1 2011
dc.subjectNonspreading mapping
dc.subjectmaximal monotone operator
dc.subjectinverse strongly-monotone mapping
dc.subjectfixed point
dc.subjectiteration procedure
dc.titleWeak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución