dc.creator | Manaka,Hiroko | |
dc.creator | Takahashi,Wataru | |
dc.date | 2011-01-01 | |
dc.date.accessioned | 2017-03-07T16:36:12Z | |
dc.date.available | 2017-03-07T16:36:12Z | |
dc.identifier | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462011000100002 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/404426 | |
dc.description | Let C be a closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping of C into itself, let A be an α-inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. We introduce an iterative sequence of finding a point of F(T)∩(A+B)(-1)0, where F(T) is the set of fixed points of T and (A + B)(-1)0 is the set of zero points of A + B. Then, we obtain the main result which is related to the weak convergence of the sequence. Using this result, we get a weak convergence theorem for finding a common fixed point of a nonspreading mapping and a nonexpansive mapping in a Hilbert space. Further, we consider the problem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonspreading mapping. | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad de La Frontera. Departamento de Matemática y Estadística | |
dc.publisher | Universidade Federal de Pernambuco. Departamento de Matemática | |
dc.source | Cubo (Temuco) v.13 n.1 2011 | |
dc.subject | Nonspreading mapping | |
dc.subject | maximal monotone operator | |
dc.subject | inverse strongly-monotone mapping | |
dc.subject | fixed point | |
dc.subject | iteration procedure | |
dc.title | Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space | |
dc.type | Artículos de revistas | |