dc.creatorCORDERO,ELENA
dc.creatorZUCCO,DAVIDE
dc.date2010-01-01
dc.date.accessioned2017-03-07T16:36:10Z
dc.date.available2017-03-07T16:36:10Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300014
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/404409
dc.descriptionThe objective of this paper is to report on recent progress on Strichartz estimates for the Schrödinger equation and to present the state-of-the-art. These estimates have been obtained in Lebesgue spaces, Sobolev spaces and, recently, in Wiener amalgam and modulation spaces. We present and compare the different technicalities. Then, we illustrate applications to well-posedness.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de La Frontera. Departamento de Matemática y Estadística
dc.publisherUniversidade Federal de Pernambuco. Departamento de Matemática
dc.sourceCubo (Temuco) v.12 n.3 2010
dc.subjectDispersive estimates
dc.subjectStrichartz estimates
dc.subjectWiener amalgam spaces
dc.subjectModulation spaces
dc.subjectSchrödinger equation
dc.titleStrichartz Estimates for the Schrödinger Equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución