dc.creator | CORDERO,ELENA | |
dc.creator | ZUCCO,DAVIDE | |
dc.date | 2010-01-01 | |
dc.date.accessioned | 2017-03-07T16:36:10Z | |
dc.date.available | 2017-03-07T16:36:10Z | |
dc.identifier | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300014 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/404409 | |
dc.description | The objective of this paper is to report on recent progress on Strichartz estimates for the Schrödinger equation and to present the state-of-the-art. These estimates have been obtained in Lebesgue spaces, Sobolev spaces and, recently, in Wiener amalgam and modulation spaces. We present and compare the different technicalities. Then, we illustrate applications to well-posedness. | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad de La Frontera. Departamento de Matemática y Estadística | |
dc.publisher | Universidade Federal de Pernambuco. Departamento de Matemática | |
dc.source | Cubo (Temuco) v.12 n.3 2010 | |
dc.subject | Dispersive estimates | |
dc.subject | Strichartz estimates | |
dc.subject | Wiener amalgam spaces | |
dc.subject | Modulation spaces | |
dc.subject | Schrödinger equation | |
dc.title | Strichartz Estimates for the Schrödinger Equation | |
dc.type | Artículos de revistas | |