dc.creator | DASGUPTA,APARAJITA | |
dc.creator | WONG,M.W | |
dc.date | 2010-01-01 | |
dc.date.accessioned | 2017-03-07T16:36:08Z | |
dc.date.available | 2017-03-07T16:36:08Z | |
dc.identifier | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/404401 | |
dc.description | By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the inverse of Lt . Using these formulas and estimates, we obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Laplacian. | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad de La Frontera. Departamento de Matemática y Estadística | |
dc.publisher | Universidade Federal de Pernambuco. Departamento de Matemática | |
dc.source | Cubo (Temuco) v.12 n.3 2010 | |
dc.subject | Heisenberg group | |
dc.subject | Laplacian | |
dc.subject | parametrized partial differential operators | |
dc.subject | Hermite functions | |
dc.subject | Fourier-Wigner transforms | |
dc.subject | heat equation | |
dc.subject | one parameter semigroup | |
dc.subject | inverse of Laplacian | |
dc.subject | Sobolev spaces | |
dc.title | The Semigroup and the Inverse of the Laplacian on the Heisenberg Group | |
dc.type | Artículos de revistas | |