dc.creatorDASGUPTA,APARAJITA
dc.creatorWONG,M.W
dc.date2010-01-01
dc.date.accessioned2017-03-07T16:36:08Z
dc.date.available2017-03-07T16:36:08Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300006
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/404401
dc.descriptionBy decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the inverse of Lt . Using these formulas and estimates, we obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Laplacian.
dc.formattext/html
dc.languageen
dc.publisherUniversidad de La Frontera. Departamento de Matemática y Estadística
dc.publisherUniversidade Federal de Pernambuco. Departamento de Matemática
dc.sourceCubo (Temuco) v.12 n.3 2010
dc.subjectHeisenberg group
dc.subjectLaplacian
dc.subjectparametrized partial differential operators
dc.subjectHermite functions
dc.subjectFourier-Wigner transforms
dc.subjectheat equation
dc.subjectone parameter semigroup
dc.subjectinverse of Laplacian
dc.subjectSobolev spaces
dc.titleThe Semigroup and the Inverse of the Laplacian on the Heisenberg Group
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución